
E-R Modeler: A Database Modeling Toolkit for Eclipse

Song Zhou, Chuanxi Xu, Hui Wu, Jing Zhang, Yuehua Lin, Juanqin Wang, Jeff Gray, Barrett Bryant
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294 USA

{zhous, xuc, wuh, zhangj, liny, wangjq, gray, bryant}@cis.uab.edu

ABSTRACT

Eclipse is a Java integrated development environment (IDE) and
tool integration platform that offers numerous extension points for
customization through a plug-in architecture. This paper describes
the design of an Eclipse plug-in called E-R Modeler. As a data-
base design toolkit, the E-R Modeler provides an E-R (Entity-
Relationship) diagram development environment that supports
XML and DDL (Database Definition Language) generation tools.
It also provides database connection and schema creation capa-
bilities. As an Eclipse plug-In, it offers multiple extension points
for other applications to build upon.
Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments –
Integrated Environments.

Keywords
Eclipse, Plug-In, E-R diagram, Data Modeling, Design Patterns.

1. INTRODUCTION
Eclipse is a development platform for constructing customized
integrated development environments (IDEs) that can be used to
create applications as diverse as web sites, embedded Java pro-
grams, C++ programs, and Enterprise JavaBeans (EJBs) [6]. The
core of Eclipse is composed of: a Java development environment,
a tool integration platform, and an open source community.
Eclipse provides a Plug-In Development Environment (PDE) that
extends the Java Development Tools (JDT). From the plug-in
viewpoint, Eclipse is a collection of “places-to-plug-things-into”
(extension points) and “things-to-plug-in” (extensions) [2]. An
Eclipse plug-in has the ability to integrate with other plug-ins to
extend functionality.

Following the Open-Closed principle [4] (i.e., “Open for exten-
sion, but closed for modification”), Eclipse is an extremely exten-
sible platform and can be extended in different levels and aspects.
Menus can be extended with new menu items, perspectives can be
extended with new views, and a workbench can be extended with

new perspectives. The basic building blocks of Eclipse are plug-
ins, which can be as simple as an online help file or as complex as
a full-fledged Java development environment. Starting from a
primitive bootstrap plug-in, all the other functionality and features
are implemented as layered plug-ins. One plug-in can extend the
functionality of another plug-in by implementing the interface
defined by the extension point of the other. Developers can pro-
vide new functionality to Eclipse by extending several existing
extension points, and, at the same time, provide further develop-
ment opportunities for others by publicizing new extension points

From a user’s point of view, Eclipse provides a consistent GUI
among different features. The menus, toolbars, preference, online
help of different plug-ins are integrated together. Eclipse also
provides a standard framework for implementing many high-level
GUI components, like viewers, wizards, and dialogs. These facili-
ties relieve a developer from rebuilding low-level infrastructure.

The E-R Modeler is implemented as an Eclipse plug-in that pro-
vides an E-R (Entity-Relationship) diagram [1] development envi-
ronment with XML and DDL (Data Definition Language) genera-
tion tools. The plug-in also provides database connection and
schema creation capabilities from within Eclipse. The primary
motivation for constructing the plug-in is to offer tool support for
an undergraduate database course. During the Spring 2004 semes-
ter, the tool will be introduced into the undergraduate database
course at UAB on a trial basis. It will be used as a pedagogical aid
toward teaching students the primary concepts of database
schema development with a user-friendly modeling tool.

The first version of E-R Modeler contains a powerful E-R dia-
gramming tool, a navigator and property view for visualization,
and provides manipulation of the E-R models. Additional features
have been implemented such as capabilities for DDL generation,
database connection, and schema generation (please see Figure 1).
In using the tool, there are several views that are provided of the
modeled schema. The outline view is used to display the hierar-
chy of the entities, relationships, and attributes. The property view
is used to display and set some basic properties (e.g., name, loca-
tion and multiplicity) of each entity set and relationship. A pop-up
property dialog is used to insert/delete attributes of an entity set.
All the views and E-R model editor are always synchronized; i.e.,
changes made in one part are reflected in other parts immediately.

The paper is organized as follows. The next section introduces the
functional modules that are contained in E-R Modeler. The de-
tailed implementation challenges are described in Section 3. A
conclusion contains a description of related and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ACMSE '04, April 2-3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-870-9/04/04...$5.00.

2. SYSTEM ARTHITECTURE
E-R Modeler not only helps users design a logical data model that
captures application requirements, but also supports the design of
the physical data model for the target server. This enables users to
forward engineer the physical data model and automatically gen-
erate physical database structures to the system catalog. In the
next generation, E-R Modeler will support reverse engineering of
existing databases and provide both a physical and logical data
model so that users can maintain an existing database, or migrate
from the current target server to a different one (see Figure 2).

2.1 Primary function modules
Figure 3 illustrates the E-R Modeler architecture. There are two
independent plug-ins: the E-R Model Editor plug-in containing a
diagram editor to create and edit E-R models, and the Generator

plug-in for DDL generation, database connection and table crea-
tion.

2.1.1 Diagram Editor
The Diagram Editor is the kernel of the entire project. It supports
the construction of three Entity-Relationship objects: entity, rela-
tionship, and attribute. The look and feel of an entity resembles
that of an object in a UML diagram, being composed of attributes
in its body. A relationship between entities has the typical rela-
tionship representation in the E-R diagram.

The entity set is displayed as a rectangular box. It has two display
strategies: one only shows the name of an entity set, while the
other shows both the names and the attributes of an entity set.
When using the latter display strategy, the rectangle representing
the entity set can automatically adjust its size after insert-
ing/removing the attributes. The entity set box can be moved arbi-
trarily, followed immediately by the moving of its associated
connection points. When one entity set is deleted, all the associ-
ated relationships are cascade deleted simultaneously.

A relationship is created by defining two connection points, each
of which must be associated with one entity set. A connection
point can only be defined by clicking along the border of an entity
set and can also be moved along the border. Dangling relation-
ships are always forbidden. A relationship can be deleted inde-
pendently. In addition, the multiplicity of a relationship is multi-
ple-to-multiple by default, but can be changed to one-to-multiple
and one-to-one through the property view, along which the shape
of the relationship is changed to reflect the multiplicity.

A list is maintained for all of the ER objects. Each entity object
has two categories of properties: geometry and relational. An
entity has position, size, and decoration points as its geometry
properties while ID, name, and attributes are relational. A rela-
tionship has end points as its geometry property while connected
entities are relational.

Model
Explorer

Model
Outline
View

Diagram
Editor

DB
Connection

Dialog

Model
Property

View

Figure 1 E-R Modeler GUI View

E-R Model Target
Database

Table
generator

Reverse
Engineer

(Future
work)

Figure 2 E-R Modeler Functionality

2.1.2 Outline View
The outline view is used to display the hierarchy of the entities,
relationships, and attributes. The only widget in the view is a
TreeViewer, the input to which is the object list from the dia-
gram editor. The ContentProvider and LabelProvider
to the TreeViewer could be customized to reflect the personali-
ties of E-R Modeler.

2.1.3 Property View/Dialog
The property view is used to display some basic information of
each entity and relationship. In addition, users can change the
name of the selected entity set and multiplicity of any relation-
ship. The property view is always synchronized with the graphical
editor and other views. Changes made in one of them are reflected
in all the others immediately.

The property dialog is used to modify the attributes of an entity
set, which can designate not only the name and type of an attrib-
ute but also the primary key of an entity set. The data types avail-
able are the typical data types in JDBC.

2.1.4 State Persistence
By default, E-R Modeler serializes the E-R objects on the Save
command. During the serialization process, both the relational
and geometry information is saved. Consequently, the persisted
E-R model can be reloaded completely from the saved file. All
information but the geometry properties of the E-R objects can
also be exported to a XML file, which can be used to generate

DDLs or utilized by other plug-ins providing additional process-
ing of the database model.

2.1.5 DDL Generator
During DDL generation, E-R Modeler loads the saved XML file
as an XML DOM tree. The DOM tree is traversed to generate
DDL based on the underlying database. Considering JDBC sup-
port for different database systems, the JDBC data type was cho-
sen as the default DDL data type. The generated DDL includes
primary key definition and foreign key definition besides table
definition. An SQL editor is embedded within E-R Modeler so
that the user can preview and edit the generated DDL file.

2.1.6 Database Table Generator
To generate database tables, E-R Modeler can connect to a par-
ticular DBMS (e.g., Oracle, Access, SQL Server, SQL Plus)
through a JDBC driver, which can map general JDBC data types
used by the generated DDL to specific data types of the corre-
sponding database. After connecting to the database, E-R Modeler
passes the translated DDL commands to the database server. The
server then executes the DDL commands to generate tables and
other database artifacts. The DBMS and database location is
specified in the form of a JDBC driver and URL, which are sup-
plied by the user through a pop-up dialog.

Figure 3. E-R Modeler Architecture

2.2 Extension points used
This section describes numerous extensions that are used in E-R
Modeler.

2.2.1 newWizards – new project and file types
The newWizards extension point is extended to support the
creation of a new E-R model project and a new E-R model file.

2.2.2 perspectives – framework
The E-R perspective is activated automatically when an E-R
model project is created or opened. The E-R perspective is com-
posed of the following parts: an E-R model editor, a navigator
view, an outline view, and a property-sheet view.

2.2.3 editors – the diagram, XML and SQL editors
The extension point “org.eclipse.editors” is extended for build-
ing the diagram editor, the XML editor and the SQL editor. The
diagram editor is associated with file type “.erm” to provide a
drawing canvas for the E-R objects. The actions invoked by the
menu and toolbar are defined in the contributor class. The XML
editor is shipped with Eclipse through PDE wizards. The pars-
ing of the XML file is implemented by defining text rules, scan-
ners and tokens. The SQL editor is used to view the generated
DDLs. Data types and keyword definitions are compatible with
those defined by JDBC.

2.2.4 actionSets – toolbar actions
Action sets are associated with the E-R model editor appearing
automatically when the editor is activated. The action set is used
when creating a model, selecting an E-R element, generating
DDLs, and uploading the database.

2.2.5 propertyPages – property view
The propertyPages extension point is extended to manage the
attributes of an entity. Users can add, delete or modify the at-
tributes in the property page. Each attribute is defined by its
name, type, and optionally length, and scale.

2.2.6 preferencePages – XML editor and coloring
The extension point org.eclipse.ui.preferencePages is used to
provide a preference page for changing the color of the charac-
ters in the XML editor.

2.2.7 toc – online help
The extension point org.eclipse.help.toc is used to create the
online help of the E-R Model editor plug-in.

3. IMPLEMENTATION CHALLENGES
In developing this E-R modeling plug-in, there were numerous
challenges encountered while building the graphical editor. In
particular, the synchronization of the textual and graphical
views, as well as the persistence of the run-time canvas informa-
tion, proved challenging. These issues are further described in
this section.

3.1 Constructing a visual editor from
scratch
The E-R Modeler has several special requirements (e.g., rich
graphical elements to represent diverse database objects, cus-
tomizability of the graphical elements such as changing position
and size). Several existing plug-ins failed to meet the require-
ments of four core tools within E-R Modeler:

3.1.1 Creation tool
The creation tool is responsible for the initiation of new E-R
elements into a model. Numerous design patterns [3] were ap-
plied, such as the Builder pattern to abstract the creation process
for different E-R elements. For example, creating an entity
needs only one graphical point, while creating a relationship
needs two points. Strategies were also used in order to define
different creation processes for the same element. For instance,
users can use either single-click or drag-and-drop operations to
create a new entity. All of the creation tools are themselves
generated by an Abstract Factory, which is also a Singleton.

Figure 4. Model-View-Controller (MVC) Architecture

Model
 ERDocument

Change

Save

Controllers

ContentProvider

PropertyDescriptor

FileDocumentProvider

View

Outline View

Property View
Diagram Editor

3.1.2 Selection tool
The selection tool is responsible for the selection of different E-
R elements. In each E-R element class, there is a Strategy
method to determine whether the element is selected given the
current cursor position. For an entity, it needs to consider
whether the cursor falls inside the rectangle denoting the entity.
But, selecting associations can be complex. Several vector com-
putations are needed to compute the distance between a point
and a line segment, which is much harder than computing the
distance between a point and a line.

3.1.3 Drawing tool
The drawing tool is responsible for rendering the different E-R
elements. The modeler has implemented two strategies to ac-
commodate the variations in displaying an entity. One only
shows a fixed sized rectangle with the name enclosed within the
entity. Another strategy displays all the attributes of an entity.
The display of a relationship is relatively easy. The task is to
determine how an arrow is to be drawn along the line. For ar-
rowed associations, vector computations (scaling, rotation and
shift) are also needed to compute the three points that define a
triangle. Based on our algorithm, both the size and the angle of
the arrow are configurable. In addition to highlighting the selec-
tion of an E-R element, a Decorator is used to decorate the se-
lected E-R element with additional highlight points. All of the
drawing tools are created by a Factory Method of the relevant
E-R element.

3.1.4 Drag-and-Drop tool
The drag-and-drop tool is responsible for handling drag-and-
drop actions happening inside the editor. Different elements
have different drag-and-drop behaviors. There is another Fac-
tory Method in each E-R element, which is responsible for re-
turning the current active drag-and-drop tool for the element.
For an entity, a drag-and-drop tool can be used to generate a
moving action. For a relationship, a drag-and-drop tool can be
used for resizing and reconnecting.

3.2 Synchronizing between editor and views
Synchronization is implemented using the MVC (Model-View-
Controller) architecture (please see Figure 4). The model can be
altered in the graphical editor and the outline view. All the
changes are sent to the model, which, after updating itself, will
broadcast the change event to the editor and all the views. To
implement this Observer pattern, the E-R document (i.e., the
object that stores all the data) is a FileDocumentProvider
of the Diagram Editor, a ContentProvider of the Outline
View and a PropertyDescriptor of the Property View.

Additionally, all the views and editors must receive the selection
change event so that they can activate necessary actions. For
example, the property view must always display the property of
the selected E-R element. Selections can be made in both the
editor and the outline view. To exchange the selection change
event, the editor and Outline view will be a SelectionLis-
tener of each other, while the property view has to listen to all
of the selection events that are generated.

3.3 Persisting the run-time canvas
It is necessary to be able to override the object read/write meth-
ods during serialization and restore the run-time information
separately. Object serialization is used to save the state of E-R
objects (i.e. all ER objects - entity, attribute, relationship are
implementations of java.io.Serializable). Special care
was taken for the SWT member fields that are not serializable.
The state can be restored when reloading the saved file. All the
geometry information is kept intact during the restoration proc-
ess.

In addition, the logical information can be saved in XML for-
mat, which can be further processed by a DDL generator or
other third parties interested in further development. To make
the plug-in work on both JDK 1.3 and JDK 1.4, a thread context
Classloader [5] is used so that the XML parser factory classes
defined in the Java extension package can instantiate the Xerces
XML parser implementation shipped with Eclipse.

4. CONCLUSION
The current version of E-R Modeler contains a powerful E-R
diagramming tool, a navigator and property view for visualiza-
tion, and provides manipulation of the E-R models. Additional
features have been implemented such as capabilities for schema
generation and database connection. E-R Modeler not only
helps users design a logical data model that captures business
requirements, but it also supports the design of the physical data
model for the target server. This enables users to forward engi-
neer the physical data model and automatically generate physi-
cal database structures to the system catalog.

4.1 Related work
Several database-related design tools already exist, including
commercial tools such as AllFusion ERwin Data Modeler
(http://www3.ca.com/Solutions/Product.asp?ID=260). However,
these commercial tools are generally stand-alone applications
that need to be deployed and configured separately from exist-
ing programming IDEs like Eclipse. Meanwhile, existing
Eclipse plug-ins such as EasySQL and JFaceDbc only provide
limited functionality for database design. E-R Modeler improves
the modeling capability of Eclipse and provides database access
ability from within Eclipse.

4.2 Future work
Although there is a core base of functionality within the tool,
there are many additional capabilities that need to be added
before the tool is mature enough to be adopted as a key compo-
nent of a database course. There are numerous extensions to E-R
Modeler that we are currently developing. Each extension sup-
ports the maturation of the tool such that its applicability as a
teaching tool is enhanced. The following list represents our
current and future work on E-R Modeler:

• Implement support for reverse engineering: We propose to
extend E-R Modeler to provide support for reverse engi-
neering of existing databases into physical and logical data
models. To accomplish this task, the database meta-data
will be queried and used to construct the model. This
would permit maintenance of an existing database that was
not previously modeled. In addition, E-R Modeler will
automate model and database synchronization by providing

a capability to compare the model with the actual database
schema from the server. Differences between the model
and actual schema will be displayed and analyzed. The
long-term vision for reverse engineering is the capability to
visually evolve a database schema by dragging and drop-
ping database instances and automating migration to a new
schema.

• Automatic layout support: The layout manager for the
visualization of modeling entities needs to be im-
proved such that aesthetic appearance is preserved as
model entities are moved around the canvas.

• Support for additional file types: E-R modeler will be
extended such that it can export and import different
data formats, such as XML Metadata Interchange
(XMI).

• Enrich the supported ER object types: Currently, E-R
Modeler only supports limited types of database ob-
jects. Additional support for many other diverse En-
tity-Relationship object types will be provided (e.g.,
weak entity and subclass types).

• Add extension-points for other plug-ins to build on: E-
R Modeler will provide several additional extension
points such that other Eclipse applications can build
on top of E-R Modeler. The possible extension points
may be the diagram editor drawing tools, and access
to the underlying model data structure to support ex-
tensions to the DDL generator. The internal structure
of the E-R model will be exposed through an interface
such that other generator tools can be created for vari-
ous database vendor implementations.

5. AVAILABILITY
The complete source code and other artifacts related to the pro-
ject are available at:

http://www.cis.uab.edu/info/Eclipse/ERModeler/

6. REFERENCES
[1] Chen, P. P., “The Entity-Relationship Model: Toward a

Unified View of Data”, ACM Transactions on Database
Systems, March 1976, pp. 1-36.

[2] Gamma, E., and Kent, B., Contributing to Eclipse: Princi-
ples, Patterns, and Plug-Ins, Addison-Wesley, 2004.

[3] Gamma, E., Helm, R.., Johnson R., and Vlissides, J. H.,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Press, 1995.

[4] Meyer, B., Object Oriented Software Construction, 2nd ed.,
Prentice Hall, 1997.

[5] Roubtsov, V., “Find a way out of the ClassLoader maze,”
Javaworld, June 2003.

[6] Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Keller-
man J. and McCarthy, P., The Java Developer’s Guide to
Eclipse, Addison-Wesley Press, 2003.

