
A Model-Driven Approach for Generating Embedded
Robot Navigation Control Software

Bina Shah, Rachael Dennison, Jeff Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294 USA

{iambina, raeanne, jgg}@uab.edu

ABSTRACT

Real-time embedded systems are time-critical systems that are
hard to implement as compared to traditional commercial
software, due to the large number of conflicting requirements.
This paper describes undergraduate research into the use of
advanced modeling techniques to improve the development of
embedded systems. In particular, we have developed domain-
specific models that describe the configuration and layout of a
hazardous environment, which is symbolically represented as an
area contaminated with hazardous materials (e.g., land mines), as
well as objects to be rescued (e.g., babies). The motivation is to
model a disaster site that is too dangerous for humans to search
for survivors. From the visual model specifications, model
interpreters will generate the embedded code that will control two
LEGO Mindstorms robots. The mission of the robots is to traverse
the hostile terrain and rescue the surviving babies. The modeling
environment and generative techniques are described.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments –
Integrated Environments.

General Terms
Design, Languages

Keywords
Model Integrated Computing, LEGO Mindstorms, generative
programming

1. INTRODUCTION
The majority of the total global computational cycles today are
spent on controlling real-time and embedded systems, including
cell phones, automobile engines and brakes, chemical factories,
and avionics applications. In fact, it has been reported that over 90
percent of all of the world’s microprocessors are used in systems
that are not “traditional” computers [5]. Physical mechanical

controls are being replaced every day by software controllers [3].
The reliance on these new devices has increased the quality of our
lives in many ways, yet also has created a serious dependence on
technology. The fact is that such systems are often very hard to
design and deploy compared to traditional commercial software
because there are many more conflicting requirements in
embedded systems. For example, the weight and size of
embedded systems are much smaller, and they often have limited
power requirements and a smaller memory footprint [6]. This has
resulted in a set of specialized techniques, resembling a “black
art,” by experts who design such systems.

This paper describes undergraduate research into the use of
advanced modeling techniques to improve the development of
embedded systems. The motivating problem for the research was
the realization that hard-coded software for real-time embedded
robotics control systems requires manual adaptation for each new
configuration. The goal of the project is to synthesize robot
control software from high-level models that depict configuration
of a hostile environment containing robots, landmines, and lost
babies.

The approach that was investigated involves the use of a meta-
configurable modeling tool called the Generic Modeling
Environment (GME), developed at Vanderbilt University [2].
From within the GME, a meta-model was created that represents
the hostile domain. In addition to the meta-model, a code
generator was constructed that translates model information into
robot control software. The code generator has deep knowledge of
the robot and navigation planning.

The next section provides an overview of the meta-modeling
environment. Section 3 offers a discussion of constraints that are
specified to limit the types of models that can be constructed. In
Section 4, topics concerning code generators are covered within
the context of the model interpreter that was constructed to
generate the robot control code. The conclusion offers a summary
of the research project.

2. THE “HOSTILE ENVIRONMENT”
 META-MODEL
In the GME, a meta-model is created for each domain that is to be
modeled. The meta-model provides a specification of all of the
entities that exist within the domain and their associations. The
meta-model is constructed using the Unified Modeling Language
(UML) and the Object Constraint Language (OCL). The top part

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSE '04, April 2-3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-870-9/04/04...$5.00.

a) The “Hostile” Meta-model

b) An Instance Model

Figure 1. The Hostile Environment Meta-model (a) and Instance Model (b)

of Figure 1 shows the simple meta-model that represents the
hostile domain. This meta-model contains entities representing the
major actors in the domain, such as the landmines, babies, and
two robots. Each attribute contains an X and Y coordinate that
represents the entity location within the physical space modeled
in the tool as the start position each time code is interpreted.
Because each entity has these coordinates, a new modeling type
was created to generalize this fact. Otherwise, each entity would
have to contain its own attributes.

The bottom part of Figure 1 illustrates a specific example that was
created as an instance of the meta-model. In this particular
instance, there are four landmines and three babies, in addition to
the two robots. It is not shown in Figure 1a, but there is provision
within the GME to specify visualization icons for each meta-
model entity. This permits visual clues in the instance models, as
evidenced by the connotations suggested by the icons of Figure
1b.

The contribution of this part of the project provided an easy to use
modeling environment for specifying the configuration of the
hostile environment.

3. CONSTRAINING THE META-MODEL
There are some things that need to be specified in the meta-
model, but cannot be captured with notations like that of Figure
1a. Some examples of things that need to be specified in the meta-
model are listed in the left of Figure 2. For instance, it is not
possible in UML class diagrams to indicate that the coordinates of
entities must be unique. In order to specify these constraints, the
OCL is used in conjunction with the UML. As shown in Figure 2,
there are six constraints that have been specified in the hostile
meta-model. These constraints can be as simple as stating that the
X and Y coordinates cannot be less than 0. Other constraints, like
the one that ensures unique coordinates, can be much more
complex. This constraint avoids collisions of robots during
design-time configuration (however, it does not enforce the
constrain during run-time – the collision avoidance at run-time is
performed by the code that is generated from the models).

Figure 2. Constraints of the Hostile Meta-model

As an example constraint, the coordinate uniqueness constraint
could be determined by the following steps:

1. Compute the number of babies, landmines, and robots
with given X and Y coordinates.

2. If the number > 1, the X and Y coordinate pair is not
unique.

Alternatively, the check for uniqueness can be specified in the
OCL as:

let count = project.allRobots(self.XCoordinate,
 self.YCoordinate) +
 project.allBabies (self.XCoordinate,
 self.YCoordinate) +
 project.allLandmines(self.XCoordinate,
 self.YCoordinate) in

if (count <= 1) then
 true
else
 false
endif

As the instance model is created, the constraint checker interprets
all of the associated constraints and reports if a violation is
encountered. The interpretation of meta-model constraints helps
to ensure a “correct by construction” approach toward well-
formed instance models.

4. SYNTHESIZING NAVIGATION CODE
Consider the situation where manual techniques are used to
program the robots for the hostile environment. For each new
adaptation that is made to the configuration of the environment,
new control software must be downloaded into the robot. If the
control software is constructed manually, this could result in
much time being spent in generating new software to conform to
the each new situation.

Model-driven techniques offer a better alternative to the ad-hoc
manual approach just described. With a model-driven approach, a
user can quickly reconfigure the hostile environment by
manipulating the modeling abstractions in the tool. Then, a model
interpreter, or code generator, simply can synthesize
automatically the code that is needed. Thus, much time can be
saved from the automatic generation of code from configuration
models.

The benefit of model-driven synthesis is realized by the
intelligence that is built into the code generator. The interpreter
can capture much of the experiential knowledge that was
traditionally used in the manual ad-hoc approach. Once this
knowledge is embedded into the interpreter, then it can be reused
in many different situations.

In the GME, the internal structure of the model can be accessed
from API calls. The internal structure of the model can be
traversed in the same way that a compiler navigates across a parse
tree. The underlying structure of the model can be synthesized
into numerous artifacts, such as input to analysis tools and even
pure code generation. The following code illustrates the API calls
used to construct a model interpreter. The code snippet shown
below simply shows how access to the root model is obtained, as
well as how attribute values are retrieved.

Figure 3. Synthesizing Robot Control Code from High-Level Models

//Get the hostileGrid model
const CBuilderAtomList allRobots =
 hostileDiagram->GetAtoms("Robot");
pos1 = allRobots->GetHeadPosition();
CBuilderAtom *Robot = allRobots->GetNext(pos1);
…
//obtain the robot's (X,Y) coordinates
int RobotX, RobotY;
Robot->GetAttribute("XCoordinate", RobotX);
Robot->GetAttribute("YCoordinate", RobotY);

The GME allows the model interpreter to be an extensible part of
the modeling environment through a plug-in architecture. In such
a case, a specialized icon appears on the GME toolbar
representing an interpreter for a particular domain. Figure 3 shows
the process of invoking a model interpreter to generate LEGO
Mindstorms code to control a robot.

5. CONCLUSION
This paper describes a modeling environment that was created to
symbolically represent an area infected with land-mines, or a
disaster site where it is too dangerous for humans to search for
survivors. From this modeling environment, model interpreters
were developed to generate the embedded code that will be
downloaded into a LEGO Mindstorms robot. The code that is
generated assists robots in maneuvering around the dangerous
obstacles. Thus, high-level models of the terrain are all that are
needed to drive the navigation of the robot. Changes to the
models can represent different configurations of the hostile
environment and produce different code for the robot. When a
new environment is encountered, all that is needed are
modifications to the models. This saves time in development
because low-level code does not need to be written by hand; it is
generated from the models (i.e., changes to the models result in
representative changes to the generated embedded code to control
the robot) [4]. The intelligence of the specialized techniques for

engineering such an embedded system is built into the code
generators, rather than residing in the minds of embedded domain
engineers. More information about the project can be found at:

http://www.gray-area/org/Research/CREW

6. ACKNOWLEDGMENTS
Summer support for this research was sponsored by the NSF
sponsored Summer Internship Program in Hybrid and Embedded
Software Research (SIPHER) at Vanderbilt University. Fall
2004/Spring 2004 support is sponsored by the Computing
Research Association's special program for Collaborative
Research Experience for Women (CRA-CREW).

7. REFERENCES
[1] Bagnall, B., Core LEGO MINDSTORMS Programming:

Unleash the Power of the Java Platform, Prentice Hall PTR;
2002.

[2] Lédeczi, A., A. Bakay, M. Maroti, P. Volgyesi, G.
Nordstrom, J. Sprinkle, and G. Karsai, “Composing Domain-
Specific Design Environments,” IEEE Computer, November
2001, pp. 44-51.

[3] Lee, E., “What’s Ahead for Embedded Software?” IEEE
Computer, September 2000, pp. 18-26.

[4] Neema, S., T. Bapty, J. Gray, and A. Gokhale, “Generators
for Synthesis of QoS Adaptation in Distributed Real-Time
Embedded Systems,” First ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component
Engineering (GPCE ’02), Pittsburgh, PA, October 6-8, 2002,
pp. 236-251.

[5] Santo, B., “Embedded Battle Royale,” IEEE Spectrum,
December 2001.

[6] Simon, D., An Embedded Software Primer, Addison-Wesley,
1999.

