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ABSTRACT 

Real-time embedded systems are time-critical systems that are 
hard to implement as compared to traditional commercial 
software, due to the large number of conflicting requirements. 
This paper describes undergraduate research into the use of 
advanced modeling techniques to improve the development of 
embedded systems. In particular, we have developed domain-
specific models that describe the configuration and layout of a 
hazardous environment, which is symbolically represented as an 
area contaminated with hazardous materials (e.g., land mines), as 
well as objects to be rescued (e.g., babies). The motivation is to 
model a disaster site that is too dangerous for humans to search 
for survivors. From the visual model specifications, model 
interpreters will generate the embedded code that will control two 
LEGO Mindstorms robots. The mission of the robots is to traverse 
the hostile terrain and rescue the surviving babies. The modeling 
environment and generative techniques are described. 
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1. INTRODUCTION 
The majority of the total global computational cycles today are 
spent on controlling real-time and embedded systems, including 
cell phones, automobile engines and brakes, chemical factories, 
and avionics applications. In fact, it has been reported that over 90 
percent of all of the world’s microprocessors are used in systems 
that are not “traditional” computers [5]. Physical mechanical 

controls are being replaced every day by software controllers [3]. 
The reliance on these new devices has increased the quality of our 
lives in many ways, yet also has created a serious dependence on 
technology. The fact is that such systems are often very hard to 
design and deploy compared to traditional commercial software 
because there are many more conflicting requirements in 
embedded systems. For example, the weight and size of 
embedded systems are much smaller, and they often have limited 
power requirements and a smaller memory footprint [6]. This has 
resulted in a set of specialized techniques, resembling a “black 
art,” by experts who design such systems. 

This paper describes undergraduate research into the use of 
advanced modeling techniques to improve the development of 
embedded systems. The motivating problem for the research was 
the realization that hard-coded software for real-time embedded 
robotics control systems requires manual adaptation for each new 
configuration. The goal of the project is to synthesize robot 
control software from high-level models that depict configuration 
of a hostile environment containing robots, landmines, and lost 
babies. 

The approach that was investigated involves the use of a meta-
configurable modeling tool called the Generic Modeling 
Environment (GME), developed at Vanderbilt University [2]. 
From within the GME, a meta-model was created that represents 
the hostile domain. In addition to the meta-model, a code 
generator was constructed that translates model information into 
robot control software. The code generator has deep knowledge of 
the robot and navigation planning. 

The next section provides an overview of the meta-modeling 
environment. Section 3 offers a discussion of constraints that are 
specified to limit the types of models that can be constructed. In 
Section 4, topics concerning code generators are covered within 
the context of the model interpreter that was constructed to 
generate the robot control code. The conclusion offers a summary 
of the research project. 

2. THE “HOSTILE ENVIRONMENT” 
     META-MODEL 
In the GME, a meta-model is created for each domain that is to be 
modeled. The meta-model provides a specification of all of the 
entities that exist within the domain and their associations. The 
meta-model is constructed using the Unified Modeling Language 
(UML) and the Object Constraint Language (OCL). The top part  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ACMSE '04, April 2-3, 2004, Huntsville, Alabama, USA. 
Copyright 2004 ACM 1-58113-870-9/04/04...$5.00. 



 

 
a) The “Hostile” Meta-model 

 

 
b) An Instance Model 

Figure 1. The Hostile Environment Meta-model (a) and Instance Model (b) 

 

of Figure 1 shows the simple meta-model that represents the 
hostile domain. This meta-model contains entities representing the 
major actors in the domain, such as the landmines, babies, and 
two robots. Each attribute contains an X and Y coordinate that 
represents the entity location within the physical space modeled 
in the tool as the start position each time code is interpreted. 
Because each entity has these coordinates, a new modeling type 
was created to generalize this fact. Otherwise, each entity would 
have to contain its own attributes. 

The bottom part of Figure 1 illustrates a specific example that was 
created as an instance of the meta-model. In this particular 
instance, there are four landmines and three babies, in addition to 
the two robots. It is not shown in Figure 1a, but there is provision 
within the GME to specify visualization icons for each meta-
model entity. This permits visual clues in the instance models, as 
evidenced by the connotations suggested by the icons of Figure 
1b. 

The contribution of this part of the project provided an easy to use 
modeling environment for specifying the configuration of the 
hostile environment. 

3. CONSTRAINING THE META-MODEL 
There are some things that need to be specified in the meta-
model, but cannot be captured with notations like that of Figure 
1a. Some examples of things that need to be specified in the meta-
model are listed in the left of Figure 2. For instance, it is not 
possible in UML class diagrams to indicate that the coordinates of 
entities must be unique. In order to specify these constraints, the 
OCL is used in conjunction with the UML. As shown in Figure 2, 
there are six constraints that have been specified in the hostile 
meta-model. These constraints can be as simple as stating that the 
X and Y coordinates cannot be less than 0. Other constraints, like 
the one that ensures unique coordinates, can be much more 
complex. This constraint avoids collisions of robots during 
design-time configuration (however, it does not enforce the 
constrain during run-time – the collision avoidance at run-time is 
performed by the code that is generated from the models). 



 
Figure 2. Constraints of the Hostile Meta-model 

 

As an example constraint, the coordinate uniqueness constraint 
could be determined by the following steps: 

1. Compute the number of babies, landmines, and robots 
with given X and Y coordinates. 

2. If the number > 1, the X and Y coordinate pair is not 
unique. 

 

Alternatively, the check for uniqueness can be specified in the 
OCL as: 
 
let count = project.allRobots(self.XCoordinate, 
                              self.YCoordinate) + 
            project.allBabies (self.XCoordinate, 
                               self.YCoordinate) + 
         project.allLandmines(self.XCoordinate, 
                              self.YCoordinate) in 

if (count <= 1) then  
 true  
else  
 false 
endif 

 

As the instance model is created, the constraint checker interprets 
all of the associated constraints and reports if a violation is 
encountered. The interpretation of meta-model constraints helps 
to ensure a “correct by construction” approach toward well-
formed instance models. 

4. SYNTHESIZING NAVIGATION CODE 
Consider the situation where manual techniques are used to 
program the robots for the hostile environment. For each new 
adaptation that is made to the configuration of the environment, 
new control software must be downloaded into the robot. If the 
control software is constructed manually, this could result in 
much time being spent in generating new software to conform to 
the each new situation. 

Model-driven techniques offer a better alternative to the ad-hoc 
manual approach just described. With a model-driven approach, a 
user can quickly reconfigure the hostile environment by 
manipulating the modeling abstractions in the tool. Then, a model 
interpreter, or code generator, simply can synthesize 
automatically the code that is needed. Thus, much time can be 
saved from the automatic generation of code from configuration 
models. 

The benefit of model-driven synthesis is realized by the 
intelligence that is built into the code generator. The interpreter 
can capture much of the experiential knowledge that was 
traditionally used in the manual ad-hoc approach. Once this 
knowledge is embedded into the interpreter, then it can be reused 
in many different situations. 

In the GME, the internal structure of the model can be accessed 
from API calls. The internal structure of the model can be 
traversed in the same way that a compiler navigates across a parse 
tree. The underlying structure of the model can be synthesized 
into numerous artifacts, such as input to analysis tools and even 
pure code generation. The following code illustrates the API calls 
used to construct a model interpreter. The code snippet shown 
below simply shows how access to the root model is obtained, as 
well as how attribute values are retrieved. 

 



 
Figure 3. Synthesizing Robot Control Code from High-Level Models 

 
//Get the hostileGrid model 
const CBuilderAtomList allRobots = 
             hostileDiagram->GetAtoms("Robot"); 
pos1 = allRobots->GetHeadPosition(); 
CBuilderAtom *Robot = allRobots->GetNext(pos1); 
… 
//obtain the robot's (X,Y) coordinates 
int RobotX, RobotY; 
Robot->GetAttribute("XCoordinate", RobotX); 
Robot->GetAttribute("YCoordinate", RobotY); 

The GME allows the model interpreter to be an extensible part of 
the modeling environment through a plug-in architecture. In such 
a case, a specialized icon appears on the GME toolbar 
representing an interpreter for a particular domain. Figure 3 shows 
the process of invoking a model interpreter to generate LEGO 
Mindstorms code to control a robot. 

5. CONCLUSION 
This paper describes a modeling environment that was created to 
symbolically represent an area infected with land-mines, or a 
disaster site where it is too dangerous for humans to search for 
survivors. From this modeling environment, model interpreters 
were developed to generate the embedded code that will be 
downloaded into a LEGO Mindstorms robot. The code that is 
generated assists robots in maneuvering around the dangerous 
obstacles. Thus, high-level models of the terrain are all that are 
needed to drive the navigation of the robot. Changes to the 
models can represent different configurations of the hostile 
environment and produce different code for the robot. When a 
new environment is encountered, all that is needed are 
modifications to the models. This saves time in development 
because low-level code does not need to be written by hand; it is 
generated from the models (i.e., changes to the models result in 
representative changes to the generated embedded code to control 
the robot) [4]. The intelligence of the specialized techniques for 

engineering such an embedded system is built into the code 
generators, rather than residing in the minds of embedded domain 
engineers. More information about the project can be found at: 

http://www.gray-area/org/Research/CREW 
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