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Abstract- Prototypes can be an effective way of interacting 
with an end-user to validate that the user’s requirements have 
been correctly captured. In the formal methods community, 
specification animation has been investigated as a way of 
creating a kind of prototype that is generated from a formal 
specification. Enriching UML diagrams with OCL 
constraints can provide the formality that is needed to 
animate the diagrams without the need for a more rigorous 
formal specification language. This paper provides an 
overview of issues concerning specification animation and 
describes an initial attempt at an animation environment for 
UML/OCL. We translate the UML/OCL into an object-
oriented declarative language, Prolog++, and utilize a 
primitive animation environment that allows both a developer 
and client to explore the validity of the specification. In 
particular, in this paper we focus on animating the effect of 
constraints. 
 
1 Introduction 
 
Language exists to communicate whatever it can 
communicate. Some things it communicates so badly that we 
never attempt to communicate them by words if any other 
medium is available 

C.S. Lewis [33] 
 
According to the Oxford English Dictionary, the 500 words 
used most in the English language each have an average of 
23 different meanings. The word “set,” for instance, has 430 
distinctly different senses. Over 25 pages and approximately 
60,000 words were required to define this word [40]. The 
variance of word meanings in natural language has always 
posed problems for those who attempt to construct an 
unambiguous and consistent statement. It is often the case 
that a written statement could be interpreted in several ways 
by different individuals, thus rendering the statement 
subjective rather than objective. 
________________________________________________ 
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One of the first detailed examinations of this problem with 
respect to the specifications of computer systems is 
contained in [25]. Hill provides numerous examples to 
illustrate this common problem. Additionally, Peter G. 
Neumann represented this point by constructing a sentence 
that contained the restrictive qualifier “only.” He then 
showed that by placing the word “only” in 15 different 
places in the sentence resulted in over 20 different 
interpretations [37]. Moreover, other words like “never,” 
“should,” “nothing,” and “usually” are sometimes applied in 
a manner in which a double meaning can be ascribed. We 
often rely on metaphors in our daily communication. As 
noted by Boyd, “Metaphors play a fundamental role in 
communication. Observe that natural language is rich with 
metaphors. Our words are pregnant with meaning” [5]. 
 
Occasionally the ambiguity found in natural language may 
evoke images of the ridiculous while at other times it may 
be the source of humor.1 For example, suppose a friend said 
to you, “I found a smoldering cigarette left by a horse.” Two 
meanings could be given to this statement: 1) a person 
found a smoldering cigarette near a horse, or 2) a horse 
dropped a cigarette that you later found. Of course, the most 
likely meaning is given in the first explanation, but the 
example highlights a problem that can occur when the 
immediate context and personal experience do not 
necessarily suggest the most probable meaning. 
 
A famous case study in which the reliance of natural 
language resulted in numerous specification errors is 
documented in [34].2 Originally, Peter Naur specified a line-
editing problem using English [36]. Several authors, most 
notably [13], used the problem to illustrate how their 
specific technique could be used to uncover errors. Meyer’s 
detailed formal analysis of the problem revealed that 
successive examinations and attempts at respecification 
using natural language, including the testing techniques 
given in [13], continued to introduce additional errors. 

                                                           
1 A list of ambiguous and inconsistent statements is being 
compiled and can be found at: 

http://www.vuse.vanderbilt.edu/~jgray/ambig.html 
2 See [42] for a detailed chronicle of the problem. 



This example points to the potential confusion that can 
result when using natural language. That is, informal 
descriptions are subject to the vagaries and ambiguities of 
the natural language in which they are expressed. If simple 
sentences are vulnerable to ambiguity, one can only imagine 
the potential problems that exist within a software 
requirements specification written entirely in natural 
language. Such documents can easily be hundreds or 
thousands of pages long. The possibility of ambiguities and 
inconsistent statements existing in such documents is very 
real. As described in [10], International Space Station 
project developers rely heavily on natural language 
specifications. They present a sample of the type of 
ambiguous natural language existing in the Space Station 
specification and note that their attempts at converting it 
into a formal tabular notation resulted in four different 
interpretations by four different teams. They state that, “the 
task of generating formal specifications from this 
documentation is fraught with difficulty” [10]. 
 
The Unified Modeling Language (UML) is the industry-
standard notation for object-oriented analysis and design 
[3]. UML diagrams can be supplemented with constraints 
specified in the Object Constraint Language (OCL) [49]. 
The same problems noted above could occur in a UML 
diagram that relies extensively on natural language to 
explain the meaning of things that are not explicit in the 
diagram. As Stuart Kent writes, “there are some constraints 
that can not be expressed diagrammatically using existing 
modeling notations” [28]. Enriching a UML diagram with 
OCL constraints can help in reducing the ambiguity [39], 
[48]. Proponents of OCL have asserted that, “Constraints 
make models less ambiguous” [49]. OCL can be used to 
describe the pre/post conditions of methods, as well as 
provide a standard way of expressing the meaning of 
constraints between objects in a way that is not subject to 
multiple interpretations. 
 
In past years, we were interested in methods for improving 
the formalization of OOAD models [17]. We focused our 
efforts on methods for translating the UML into formal 
object-oriented specification languages like Object-Z [7], 
[45] and [31]. Many researchers have made significant 
contributions in this area; see [4], [6], and “The precise 
UML Group,” pUML (http://www.cs.york.ac.uk/puml/). 
 
A second benefit can be realized from a disciplined use of 
OCL. As the level of formality and preciseness increases in 
a UML diagram, the ability to execute or animate the 
diagram also increases. This allows for a kind of prototype 
that is constructed from the semantics given to the 
combination of the diagram and the OCL expressions. This 
paper describes our initial efforts at creating an animation 
environment for UML/OCL. 
 

In Section 2 of this paper we provide an introduction to the 
specification animation literature. That section is followed 
by a discussion in Section 3 of the current approach that we 
use to animate UML/OCL by translating the diagrams into a 
declarative object-oriented programming language. A small 
example is then presented in Section 4 to illustrate the 
approach. Section 5 describes an animation environment 
that we have created. A summary section concludes the 
paper. 
 
2 Specification Animation 
 
A stander-by may sometimes, perhaps, see more of the game 
than he that plays it. 

Jonathan Swift [8] 
 
Whether it be a contractor or architect interacting with a 
future building owner, or a developer meeting with a client, 
prototyping is often used as a means of arriving at 
consensus with regard to the customer’s requirements [1]. 
For example, an analysis of 39 case studies that used rapid 
prototyping was conducted by Gordon and Bieman [15]. 
Their work is a report on a number of commercial software 
projects in which prototyping was used with some success. 
Of these, 33 were considered successes, 3 were considered 
failures, and 3 were not rated. 
  
In [27], results are presented from a study which examined 
the efficacy of 15 different customer-developer links. A 
customer-developer link is defined as the facilities used to 
exchange information between the client and the developer. 
In conducting their study, Keil and Carmel visited 17 
software development companies and collected information 
about 31 different projects. The development environments 
used to classify each project were package (commercially 
“shrink-wrapped” software) or custom (for contract or in-
house software) environments. Of the 31 projects, only 14 
were determined to be “successful” (a questionably 
subjective term which was interpreted by each individual 
project manager). The results of this study lend support to 
the technique of rapid prototyping. For custom projects, the 
user-interface/requirements prototyping links were used the 
most on successful projects and were ranked as 2nd (user-
interface prototyping) and 3rd (requirements prototyping) in 
terms of overall effectiveness. The results for packaged 
software were not quite as supportive (user-interface was 
3rd and requirements was 5th in terms of effectiveness) 
[27]. 
 
In the formal specification literature, animation refers to a 
kind of prototype resulting from an executable specification. 
With animation, a specifier may pose queries against the 
specification that can be answered in an automated way. An 
advantage of this approach is obtained when both the 
specifier and client come together to validate the 



specification. This scenario provides an environment to ask 
‘what-if’ questions without the explicit construction of a 
prototype. Rapid feedback from the animation session can 
help to ensure that the specification actually represents what 
the client or user intended. 
 
An additional advantage is that the animation approach 
makes the underlying notation and formalism transparent. 
The user of the animator does not need to have a thorough 
understanding of the notation used to represent the system. 
Leaders in the formal methods community have written that 
it is a myth to state that formal methods require highly 
trained mathematicians [18]. Although it may be true that 
one does not need a degree in mathematics to specify a 
system formally, it is also true that many beginners do 
indeed have a difficult time in reading and writing formal 
specifications. It is a skill that requires practice and 
patience. An initial investigation into the difficulty of 
applying discrete mathematics in formal specification is 
described in [11]. In this experiment, 62 computer science 
graduate and undergraduate students were asked to read a 
small specification written in the popular Z specification 
language [44]. Each student was then asked three questions. 
An interesting result was that nearly a third of the students 
could not answer a single question correctly about the 
specification. Finney wrote, “…in general the students 
found it difficult to understand any of the very simple Z 
specifications” [11]. 
 
One could argue that the same observations are true for 
UML diagrams that are enriched with OCL. A customer will 
most likely not understand all of the significant 
analysis/design knowledge embodied in the diagrams and 
constraints. We believe that benefits can be realized when 
animation is used to make the diagrams and constraints 
transparent to the end-user who wishes to query the 
specification. 
 
2.1 Opposition to the Approach 
 
There have been several arguments put forth against 
animation. The main objection in [21] concerns the tradeoff 
between the expressiveness of a formal notation and its 
executability; that is, clarity is to be given a higher priority 
than executability. Any attempt at animation is seen as a 
minimization of this priority. An example of this tradeoff 
can be found in [26], where the greatest common divisor 
function was specified. A concise and clear specification of 
the gcd function is terribly inefficient in terms of its 
executablity. A refinement of the function is shown to 
improve executability, but the refinement is more difficult to 
understand.  
 
A concise specification that contains negation and non-
determinism can lose some of its clarity when it is refined 
into a form that is more amenable to animation. To achieve 

animation, there is also a tendency to over specify a problem 
while introducing too much implementation detail. Hayes 
and Jones also argue that formal specifications are to be 
read and that other techniques for validation should be 
employed as an alternative to animation. 
 
A response to these claims can be found in [12]. Fuchs 
shows that the examples in the Hayes and Jones paper, “can 
be directly translated into executable form on almost the 
same level of abstraction, and without essentially altering 
their structure.” Much of that paper is focused on 
demonstrating how to transform the Hayes and Jones 
examples into an executable form that does not radically 
lower the abstraction level. Positive arguments for the use of 
animation are also made in [16], where animation is used to 
validate a commercial software package. 
 
2.2 Related Work 
 
There are some obvious observations that can be made from 
the literature on animating formal specification languages: 
 
1. Most of the research has focused on the Z specification 
language [44], or subsets of Z. Examples of work that 
focused on Z are the Surrey Z Animator (SuZAn) [30], the 
animator described in [50], the work of Goodman [14], ZAL 
[43], the work of Utting [47], Z Animation System (ZANS) 
[51], Prolog Z Animator (PiZA) [24], and Possum [23]. 
Similarly, research has also been conducted in animating 
Object-Z [22]. 
2. Many of the animators enumerated above use a 
declarative programming language to implement the 
underlying functionality of the animator. The most 
represented language is Prolog, while a few animators have 
used Haskell. 
3. Most of these animation systems, however, require the 
user either to understand portions of the formal 
specification, or to have familiarity with the programming 
language that is used to implement the animator. 
 
In the context of UML, there is some similarity in our 
research interests with the description of tools offered in the 
commercial product from IFAD (VDMTools); see 
http://www.ifad.dk. The IFAD tool suite provides a link 
with Rational Rose to translate UML diagrams into VDM or 
VDM++ [9]. Another tool in the suite will interpret and 
debug VDM/VDM++ specifications. This commercial tool, 
however, deviates from our goal of making the underlying 
formalism transparent to the end-user. 



3 Animating UML/OCL with Prolog++ 
 
Specifications, by their very definition, are declarative in 
nature; that is, they specify what, rather than how, the 
system behaves. OCL is a declarative language [49]. 
Declarative logic programming languages that employ a 
Horn clause syntax, like Prolog, have been beneficial to 
animator construction, as noted in Section 2.2. For our 
research we have utilized Prolog++, a Prolog environment 
from Logic Programming Associates (LPA) that offers 
object-oriented extensions to a standard Prolog compiler 
(see http://www.lpa.co.uk). We chose this particular 
language because of its declarative nature and the more 
natural mapping from UML, due to its object-oriented 
additions. In standard Prolog, a program is created by 
defining various logical predicates. In Prolog++, those 
predicates are moved into a class structure and serve as 
methods of a class. 
 
Like most object-oriented languages, Prolog++ offers 
syntax and semantics for representing class and instance 
attributes, as well as class and instance methods. Visibility 
control of attributes and methods are available, although 
there is no current support for protected visibility; only 
public and private visibility control is allowed. 
Multiple inheritance is supported, as well as syntax for 
explicitly representing the aggregation that may occur 
within a class. Please refer to [35] for a detailed description 
of this language. 
 
The main task in constructing an animator is the formulation 
of a mapping from the conceptual model to the declarative 
programming language that serves as the core engine of the 
animator. A major sub-task of creating this mapping is the 
construction of a library of routines in the underlying 
language that represent the semantics of operations used in 
the modeling language. For example, OCL provides several 
operations that are often used to specify invariants on 
subclasses (e.g., oclIsKindOf, oclIsTypeOf, and oclType). 
Because Prolog++ does not provide constructs for 
supporting these operations, we needed to supplement our 
class definitions with reflective type information. We 
accomplished this by introducing a class attribute, named 
class_type, into each Prolog++ class definition. The 
subclass operations are then defined with respect to this 
attribute. As an example, the following definition of the 
oclIsTypeOf operation exists in one of the mixin classes3 
that we have created to emulate these operations in 
Prolog++: 
 

oclIsTypeOf(AType) :- self@class_type = AType. 
 

                                                           
3 All base classes must inherit from these mixin class. 

Collections are used extensively in OCL. Prolog++ offers a 
useful construct that provides access to all instances of a 
particular class. This can be most helpful in the animation of 
collections composed of instances. In Prolog++, all 
instances of a particular class can be sent a message with the 
following command: 
 

(all instance class)<-someMessage. 
 
Using variations of this construct as a template, many of the 
collection-based operations of OCL (e.g., forall, 
exists, collect, and select) can be translated into 
Prolog++. Obviously, this construct is helpful when 
mapping the OCL allInstances operation. 
 
In addition, OCL collections have predefined properties. 
The Prolog++ all instance template can be used to 
implement these properties as well. A collection property 
that is often referenced is the size property, which returns 
the number of elements that are contained in a particular 
collection. We have defined a Prolog++ implementation of 
size in a mixin class. It is implemented by having each 
element of a collection increment a class attribute that 
contains the overall size. The size method can also be 
used to provide a facility for verifying the multiplicity 
constraints from a UML class diagram. This is 
accomplished by applying the size method to the 
collection resulting from navigating an association. The 
isEmpty property can be used to determine if a particular 
collection contains any elements. This can be naively 
translated as a special case where size is greater than zero. 
Please see Section 4.3 for an example that applies the size 
method. 
 
If a collection is composed of numeric elements, the sum 
property can be meaningfully applied. This property 
represents the sum of all elements in a collection. The same 
technique that is used for implementing the size property 
can be used to implement sum; that is, using a global class 
attribute to temporarily serve as a placeholder for the 
summation when an iteration over a collection is performed. 
 
By defining the Prolog++ equivalent of OCL primitive 
operations and properties in mixin classes, we can more 
easily map the specific OCL constraints into a form that can 
be executed from within the Prolog++ environment. 
 
4 Example 
 
In this section, we demonstrate the approach of validating 
association constraints. We use an example that models the 
basic components of an audio system; see Figure 1. The 
model example is taken from [38]. 
 



In this model, a connection is made between components 
through a port. Some components, like power amplifiers 
and preamplifiers, have both an input port and output port. 
However, microphones have a single output port, whereas 
speakers have only input ports. The src and dst roles of the 
Connection association model the coupling between audio 
components. Impedance attributes have been added to 
OutputPort and InputPort, but the diagram has been kept 
simple to highlight the associations that will be under 
consideration. 
 

 
 

Figure 1. Audio System Example 
 
A problem with the model is that it allows full connectivity 
between any objects that are instances of Port or Port’s 
subclasses. For example, the above model would allow an 
input port to connect to itself - an illegal connection in this 
domain. OCL can be used to enrich the UML class diagram 
by describing rules about valid connections. Without OCL, 
such rules would have to be described in natural language. 
OCL allows a more precise specification of the connection 
rules. Using OCL also opens up the possibility of translating 
the constraint definition into an animation environment or 
programming language. 
 
There are three types of rules that we will specify using 
OCL:  
 
• valid connection of port types (e.g., input ports can 
connect only to output ports), 
• valid connections between audio components (e.g., 
microphones and preamplifiers), 
• the necessary existence of certain components (e.g., at 
least one power amplifier is needed). 
 

4.1 Specifying connection types 
 
Our model should specify that valid connections exist when 
an input port is connected to an output port. However, it is 
invalid to connect an input port to another input port, or an 
output port to another output port. This can be specified in 
OCL as: 
 
Connection->forAll(c | 
                   c.src.oclIsTypeOf(OutputPort) 
               and c.dst.oclIsTypeOf(InputPort)) 
 
To represent this constraint in Prolog++, the class_type 
attribute must be inserted into each class, as discussed in 
Section 3. Therefore, the outputPort class would contain a 
class attribute definition like the following: 
 

public class attributes 
      class_type = 'outputPort'. 

 
A similar declaration would need to be defined in the 
inputPort class as: 
 

public class attributes 
     class_type = 'inputPort'. 

 
In the Prolog++ port class, the inv_Connection 
method can then be used to represent the semantics of the 
above OCL constraint. This method can be written more 
concisely using the oclIsTypeOf method described in 
Section 3: 
 
inv_Connection :- 
   (all instance class)<-  
          (@src<-oclIsTypeOf('outputPort'), 
           @dst<-oclIsTypeOf(‘inputPort’)). 
 
4.2 Constraining relationship participation 
 
We also need to specify the valid connections that can occur 
between the various audio components. For example, our 
model will specify that a microphone can connect to only a 
preamplifier; the output of a preamplifier can connect to 
only a power amplifier; the output of a power amplifier can 
connect to only a speaker. The OCL equivalent of these 
constraints could be written as: 
 

Mic->forAll(m | m.outputPort.dst ->  
         forAll(i | i.preamp)) 

 
Preamp->forAll(p | p.outputPort.dst ->  
              forAll(i | i.poweramp)) 

 
PowerAmp->forAll(a | a.outputPort.dst ->  
               forAll(i | i.speaker)) 

 
Alternatively, the above expression that constrains a 
microphone’s output port could be specificed as: 
 
 

Preamp PowerAmp

1

Mic

1

OutputPort
Z_out : int

1 IO_Device
1

1

Speaker

1

InputPort
Z_in : int1

1

dst0..*Port 0..*

0..* src0..*
Connection



Mic->forAll(m |  
           m.outputPort.dst.oclIsTypeOf(PreAmp)) 

 
Using an approach similar to Section 4.1, the above OCL 
constraint can be translated into Prolog++ by navigating 
from the output port part and checking that the class type of 
its destination port is a preamplifier. The Prolog++ for this 
constraint would be translated as: 
 
inv_Mic_Dst :-  
    (all instance)<- (outputPort@dst  
                      <-oclIsTypeOf(‘preAmp’)). 

 
4.3 Specifying component existence 
 
A final constraint that we want to specify concerns the 
requirement that at least one power amplifier must exist in 
our audio system. In OCL we can specify this as: 
 

PowerAmp.allInstances->size >= 1 
 
As described in the Section 3, each base class in a hierarchy 
must inherit from a mixin class that contains a method for 
computing the size of a collection. The mixin class also has 
a class attribute (size_att) that is used to compute the 
size. The size method can be written in Prolog++ as: 
 
size_func :- size_att += 1. 
 
size(S) :- size_att := 0, 
          (all instance class) <- size_func,  
           S = @size_att. 
 
With the above primitives in place, the actual constraint can 
be written simply as: 
 

inv_powerAmp_existence :- size(S), S >= 1. 
 
After the construction of basic primitives in mixin classes, 
OCL constraints can be concisely represented using the 
declarative power of Prolog++. 
 
5 An Animation Environment 
 
You need to be able to execute, debug, and simulate your 
model if you want to have any kind of feedback of what the 
system will actually do 

David Harel [19] 
 
A major goal in this work is to make the underlying 
Prolog++ transparent to the user. During a prototype 
demonstration, there is little advantage in revealing the 
underlying source code to the customer. Likewise, 
specification animation should not involve the customer in 
the details of Prolog++. However, it may be necessary in 
some situations for a developer to access the underlying 
representation during an animation, but not the customer. 
We provide access to the base Prolog++ environment, but 

the focus from the customer’s aspect should be a more 
suitable view of the results of an animation. 
 
Figure 2 illustrates the key components of our initial 
UML/OCL animation environment. Developers and 
customers interact with each other as they validate the 
UML/OCL models while using the animation environment. 
A tool provided by Logic Programming Associates, the 
Intelligence Server, allows programs written in other 
languages to access the Prolog++ environment. In our 
animator, this is a valuable asset because it allows the 
creation of the animation environment using a language4 
that has a powerful user-interface focus while treating the 
Prolog++ environment as our fundamental execution engine 
for animation. The animation environment constructs 
Prolog++ queries and issues them to the Intelligence Server. 
As Prolog++ executes the queries, results are returned back 
to the environment from the Intelligence Server. 
 
To achieve transparency, a hierarchical view of the classes 
and existing objects is available. From this view, a user of 
the animator may create and delete objects, view and assign 
values to object attributes (if set/get methods are defined), 
and check constraint invariants; see Figure 3. The animator 
interacts with the Intelligence Server and issues the 
appropriate queries to process the user’s commands and 
update the hierarchical view. When needed, a developer 
may also issue Prolog++ queries directly and alter the state 
of the animation. The developer can see the effect of a query 
in a special window that captures the result returned from 
the Intelligence Server. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Components of an Animation Environment 

                                                           
4 Our animation environment has been constructed using 
Inprise’s (Borland) Delphi. 
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Figure3. A Prolog++ Animation Environment 

 
As with other animators, our animator allows a user to close 
an existing animation and load a new model description. 
Additionally, a user can save the state of the current 
animation session. In this case, all of the objects that exist 
during a session are serialized to an output file and the state 
can be loaded back into the animator during a future session. 
 
Through the animator, the result of constraint invariants can 
be viewed. Constraints can be invoked at either the object or 
class level. At the class level, the constraints of all objects of 
a particular class are checked. Also, an option is provided to 
check every constraint in the model. 
 
6 Conclusion 
 
This returns us to the underlying tension in the software 
process: that between the subjective and the objective, 
between the holistic mental view and the rigorous formal 
model. The first describes what is needed; the second 
ensures that what was requested is delivered. 

Bruce Blum [2] 
 
An often cited adage states that, “A picture is worth a 
thousand words.” In most cases, this is meant to signify a 
positive trait that expresses the subjective power of a visual 
stimulus. For example, a piece of art often embodies an 
observable image in addition to eliciting emotional and 
visceral responses. Sometimes the perceptions of the viewer 
extend any original intention that the artist attempted to 

render; this is the subjective beauty of art. In a sense, this 
adage focuses on the connotative expressiveness of 
visualization. 
 
However, what might be beneficial from a subjective 
viewpoint could prove detrimental when attempting 
objectivity. Using this adage, a problem may occur when a 
visualization does indeed represent a thousand words; 
especially when only about 50 of those words were 
intended! An illustration representing this view is presented 
in [41] and is accompanied by a statement that summarizes 
the utility of graphical representations, “In considering 
representations for programming, the concern is formalisms, 
not art − precision, not breadth of interpretation.” 
 
The designers of UML have worked diligently on the 
difficult task of documenting the semantics of the UML 
diagrams [3]. The annual OOPSLA workshop on Behavioral 
Semantics [29] and the work of the pUML have also 
concentrated efforts in this important area. The criticality of 
these efforts can be summarized by the following statement: 
 
However, many methodologists fail to rigorously define the 
semantics of the languages. Without a rigorous semantic 
definition, precise model behavior over time is not well 
defined and full executability and automatic code synthesis 
is impossible.  

Harel and Gery [20] 
 



There are some things that cannot be specified with fine-
grained detail in a UML diagram. Often, those things that 
cannot be specified precisely in a visual diagram are 
specified in natural language as commentary that is 
peripheral to the diagram. In a previous section of this paper 
we have argued against the danger of ambiguity that can 
result from a reliance on natural language. 
 
The OCL has been proposed as an alternative to natural 
language in the specification of those things that cannot be 
visually described [39], [48]. We believe that the 
enrichment of UML diagrams with OCL not only increases 
the precision of a UML diagram, but also presents 
opportunities for animating those diagrams using a 
declarative language. Specification animation allows a 
developer to interact with the customer in a validation 
context while hiding many of the underlying diagrams and 
formalisms from the client. 
 
Our initial work has focused on discovering techniques for 
mapping parts of the UML and OCL to an object-oriented 
declarative programming language. In particular, we have 
focused on the translation of invariant constraints from OCL 
to Prolog++ and integrating the translation into an 
environment that allows a developer to interact with the 
client. We plan to improve on this initial work in several 
areas. 
 
Our most immediate plan for future work is the 
incorporation of method pre/post-conditions into the 
animation. Modeling the behavior of a method through 
pre/post-conditions is a most important aspect toward 
providing a meaningful animation. We will also investigate 
the roles that other UML diagrams (e.g., state diagrams) 
play in an animation session. 
 
The Prolog++ code that we currently load into our 
animation environment and feed through the Intelligence 
Server is manually translated from UML/OCL. An obvious 
feature that we would like to add is a technique for 
automatically translating the UML/OCL into Prolog++. We 
have already constructed an OCL parser for a project that is 
unrelated to this work. Our research colleagues at 
Vanderbilt’s Institute for Software Integrated Systems 
(ISIS)5 have performed work on Model Integrated 
Computing (MIC) [46] that has resulted in a Graphical 
Modeling Environment (GME) for creating, among other 
things, UML diagrams [32]. We would like to explore the 
possibility of using environments like the GME, or Rational 
Rose and the Rose Extensibility Interface (REI), to extract a 
model and automate the translation. 
 

                                                           
5 http://www.isis.vanderbilt.edu 
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