
Constraint Animation Using an
Object-Oriented Declarative Language

Jeff Gray and Stephen Schach

Department of Computer Science
Vanderbilt University

Nashville, TN
{jgray, srs}@vuse.vanderbilt.edu

Abstract- Prototypes can be an effective way of interacting
with an end-user to validate that the user’s requirements have
been correctly captured. In the formal methods community,
specification animation has been investigated as a way of
creating a kind of prototype that is generated from a formal
specification. Enriching UML diagrams with OCL
constraints can provide the formality that is needed to
animate the diagrams without the need for a more rigorous
formal specification language. This paper provides an
overview of issues concerning specification animation and
describes an initial attempt at an animation environment for
UML/OCL. We translate the UML/OCL into an object-
oriented declarative language, Prolog++, and utilize a
primitive animation environment that allows both a developer
and client to explore the validity of the specification. In
particular, in this paper we focus on animating the effect of
constraints.

1 Introduction

Language exists to communicate whatever it can
communicate. Some things it communicates so badly that we
never attempt to communicate them by words if any other
medium is available

C.S. Lewis [33]

According to the Oxford English Dictionary, the 500 words
used most in the English language each have an average of
23 different meanings. The word “set,” for instance, has 430
distinctly different senses. Over 25 pages and approximately
60,000 words were required to define this word [40]. The
variance of word meanings in natural language has always
posed problems for those who attempt to construct an
unambiguous and consistent statement. It is often the case
that a written statement could be interpreted in several ways
by different individuals, thus rendering the statement
subjective rather than objective.
__
Best Conference Paper Award:

Proceedings of the 38th Annual ACM SE Conference,
Clemson, SC, April 7-8, 2000, pp. 1-10.

One of the first detailed examinations of this problem with
respect to the specifications of computer systems is
contained in [25]. Hill provides numerous examples to
illustrate this common problem. Additionally, Peter G.
Neumann represented this point by constructing a sentence
that contained the restrictive qualifier “only.” He then
showed that by placing the word “only” in 15 different
places in the sentence resulted in over 20 different
interpretations [37]. Moreover, other words like “never,”
“should,” “nothing,” and “usually” are sometimes applied in
a manner in which a double meaning can be ascribed. We
often rely on metaphors in our daily communication. As
noted by Boyd, “Metaphors play a fundamental role in
communication. Observe that natural language is rich with
metaphors. Our words are pregnant with meaning” [5].

Occasionally the ambiguity found in natural language may
evoke images of the ridiculous while at other times it may
be the source of humor.1 For example, suppose a friend said
to you, “I found a smoldering cigarette left by a horse.” Two
meanings could be given to this statement: 1) a person
found a smoldering cigarette near a horse, or 2) a horse
dropped a cigarette that you later found. Of course, the most
likely meaning is given in the first explanation, but the
example highlights a problem that can occur when the
immediate context and personal experience do not
necessarily suggest the most probable meaning.

A famous case study in which the reliance of natural
language resulted in numerous specification errors is
documented in [34].2 Originally, Peter Naur specified a line-
editing problem using English [36]. Several authors, most
notably [13], used the problem to illustrate how their
specific technique could be used to uncover errors. Meyer’s
detailed formal analysis of the problem revealed that
successive examinations and attempts at respecification
using natural language, including the testing techniques
given in [13], continued to introduce additional errors.

1 A list of ambiguous and inconsistent statements is being
compiled and can be found at:

http://www.vuse.vanderbilt.edu/~jgray/ambig.html
2 See [42] for a detailed chronicle of the problem.

This example points to the potential confusion that can
result when using natural language. That is, informal
descriptions are subject to the vagaries and ambiguities of
the natural language in which they are expressed. If simple
sentences are vulnerable to ambiguity, one can only imagine
the potential problems that exist within a software
requirements specification written entirely in natural
language. Such documents can easily be hundreds or
thousands of pages long. The possibility of ambiguities and
inconsistent statements existing in such documents is very
real. As described in [10], International Space Station
project developers rely heavily on natural language
specifications. They present a sample of the type of
ambiguous natural language existing in the Space Station
specification and note that their attempts at converting it
into a formal tabular notation resulted in four different
interpretations by four different teams. They state that, “the
task of generating formal specifications from this
documentation is fraught with difficulty” [10].

The Unified Modeling Language (UML) is the industry-
standard notation for object-oriented analysis and design
[3]. UML diagrams can be supplemented with constraints
specified in the Object Constraint Language (OCL) [49].
The same problems noted above could occur in a UML
diagram that relies extensively on natural language to
explain the meaning of things that are not explicit in the
diagram. As Stuart Kent writes, “there are some constraints
that can not be expressed diagrammatically using existing
modeling notations” [28]. Enriching a UML diagram with
OCL constraints can help in reducing the ambiguity [39],
[48]. Proponents of OCL have asserted that, “Constraints
make models less ambiguous” [49]. OCL can be used to
describe the pre/post conditions of methods, as well as
provide a standard way of expressing the meaning of
constraints between objects in a way that is not subject to
multiple interpretations.

In past years, we were interested in methods for improving
the formalization of OOAD models [17]. We focused our
efforts on methods for translating the UML into formal
object-oriented specification languages like Object-Z [7],
[45] and [31]. Many researchers have made significant
contributions in this area; see [4], [6], and “The precise
UML Group,” pUML (http://www.cs.york.ac.uk/puml/).

A second benefit can be realized from a disciplined use of
OCL. As the level of formality and preciseness increases in
a UML diagram, the ability to execute or animate the
diagram also increases. This allows for a kind of prototype
that is constructed from the semantics given to the
combination of the diagram and the OCL expressions. This
paper describes our initial efforts at creating an animation
environment for UML/OCL.

In Section 2 of this paper we provide an introduction to the
specification animation literature. That section is followed
by a discussion in Section 3 of the current approach that we
use to animate UML/OCL by translating the diagrams into a
declarative object-oriented programming language. A small
example is then presented in Section 4 to illustrate the
approach. Section 5 describes an animation environment
that we have created. A summary section concludes the
paper.

2 Specification Animation

A stander-by may sometimes, perhaps, see more of the game
than he that plays it.

Jonathan Swift [8]

Whether it be a contractor or architect interacting with a
future building owner, or a developer meeting with a client,
prototyping is often used as a means of arriving at
consensus with regard to the customer’s requirements [1].
For example, an analysis of 39 case studies that used rapid
prototyping was conducted by Gordon and Bieman [15].
Their work is a report on a number of commercial software
projects in which prototyping was used with some success.
Of these, 33 were considered successes, 3 were considered
failures, and 3 were not rated.

In [27], results are presented from a study which examined
the efficacy of 15 different customer-developer links. A
customer-developer link is defined as the facilities used to
exchange information between the client and the developer.
In conducting their study, Keil and Carmel visited 17
software development companies and collected information
about 31 different projects. The development environments
used to classify each project were package (commercially
“shrink-wrapped” software) or custom (for contract or in-
house software) environments. Of the 31 projects, only 14
were determined to be “successful” (a questionably
subjective term which was interpreted by each individual
project manager). The results of this study lend support to
the technique of rapid prototyping. For custom projects, the
user-interface/requirements prototyping links were used the
most on successful projects and were ranked as 2nd (user-
interface prototyping) and 3rd (requirements prototyping) in
terms of overall effectiveness. The results for packaged
software were not quite as supportive (user-interface was
3rd and requirements was 5th in terms of effectiveness)
[27].

In the formal specification literature, animation refers to a
kind of prototype resulting from an executable specification.
With animation, a specifier may pose queries against the
specification that can be answered in an automated way. An
advantage of this approach is obtained when both the
specifier and client come together to validate the

specification. This scenario provides an environment to ask
‘what-if’ questions without the explicit construction of a
prototype. Rapid feedback from the animation session can
help to ensure that the specification actually represents what
the client or user intended.

An additional advantage is that the animation approach
makes the underlying notation and formalism transparent.
The user of the animator does not need to have a thorough
understanding of the notation used to represent the system.
Leaders in the formal methods community have written that
it is a myth to state that formal methods require highly
trained mathematicians [18]. Although it may be true that
one does not need a degree in mathematics to specify a
system formally, it is also true that many beginners do
indeed have a difficult time in reading and writing formal
specifications. It is a skill that requires practice and
patience. An initial investigation into the difficulty of
applying discrete mathematics in formal specification is
described in [11]. In this experiment, 62 computer science
graduate and undergraduate students were asked to read a
small specification written in the popular Z specification
language [44]. Each student was then asked three questions.
An interesting result was that nearly a third of the students
could not answer a single question correctly about the
specification. Finney wrote, “…in general the students
found it difficult to understand any of the very simple Z
specifications” [11].

One could argue that the same observations are true for
UML diagrams that are enriched with OCL. A customer will
most likely not understand all of the significant
analysis/design knowledge embodied in the diagrams and
constraints. We believe that benefits can be realized when
animation is used to make the diagrams and constraints
transparent to the end-user who wishes to query the
specification.

2.1 Opposition to the Approach

There have been several arguments put forth against
animation. The main objection in [21] concerns the tradeoff
between the expressiveness of a formal notation and its
executability; that is, clarity is to be given a higher priority
than executability. Any attempt at animation is seen as a
minimization of this priority. An example of this tradeoff
can be found in [26], where the greatest common divisor
function was specified. A concise and clear specification of
the gcd function is terribly inefficient in terms of its
executablity. A refinement of the function is shown to
improve executability, but the refinement is more difficult to
understand.

A concise specification that contains negation and non-
determinism can lose some of its clarity when it is refined
into a form that is more amenable to animation. To achieve

animation, there is also a tendency to over specify a problem
while introducing too much implementation detail. Hayes
and Jones also argue that formal specifications are to be
read and that other techniques for validation should be
employed as an alternative to animation.

A response to these claims can be found in [12]. Fuchs
shows that the examples in the Hayes and Jones paper, “can
be directly translated into executable form on almost the
same level of abstraction, and without essentially altering
their structure.” Much of that paper is focused on
demonstrating how to transform the Hayes and Jones
examples into an executable form that does not radically
lower the abstraction level. Positive arguments for the use of
animation are also made in [16], where animation is used to
validate a commercial software package.

2.2 Related Work

There are some obvious observations that can be made from
the literature on animating formal specification languages:

1. Most of the research has focused on the Z specification
language [44], or subsets of Z. Examples of work that
focused on Z are the Surrey Z Animator (SuZAn) [30], the
animator described in [50], the work of Goodman [14], ZAL
[43], the work of Utting [47], Z Animation System (ZANS)
[51], Prolog Z Animator (PiZA) [24], and Possum [23].
Similarly, research has also been conducted in animating
Object-Z [22].
2. Many of the animators enumerated above use a
declarative programming language to implement the
underlying functionality of the animator. The most
represented language is Prolog, while a few animators have
used Haskell.
3. Most of these animation systems, however, require the
user either to understand portions of the formal
specification, or to have familiarity with the programming
language that is used to implement the animator.

In the context of UML, there is some similarity in our
research interests with the description of tools offered in the
commercial product from IFAD (VDMTools); see
http://www.ifad.dk. The IFAD tool suite provides a link
with Rational Rose to translate UML diagrams into VDM or
VDM++ [9]. Another tool in the suite will interpret and
debug VDM/VDM++ specifications. This commercial tool,
however, deviates from our goal of making the underlying
formalism transparent to the end-user.

3 Animating UML/OCL with Prolog++

Specifications, by their very definition, are declarative in
nature; that is, they specify what, rather than how, the
system behaves. OCL is a declarative language [49].
Declarative logic programming languages that employ a
Horn clause syntax, like Prolog, have been beneficial to
animator construction, as noted in Section 2.2. For our
research we have utilized Prolog++, a Prolog environment
from Logic Programming Associates (LPA) that offers
object-oriented extensions to a standard Prolog compiler
(see http://www.lpa.co.uk). We chose this particular
language because of its declarative nature and the more
natural mapping from UML, due to its object-oriented
additions. In standard Prolog, a program is created by
defining various logical predicates. In Prolog++, those
predicates are moved into a class structure and serve as
methods of a class.

Like most object-oriented languages, Prolog++ offers
syntax and semantics for representing class and instance
attributes, as well as class and instance methods. Visibility
control of attributes and methods are available, although
there is no current support for protected visibility; only
public and private visibility control is allowed.
Multiple inheritance is supported, as well as syntax for
explicitly representing the aggregation that may occur
within a class. Please refer to [35] for a detailed description
of this language.

The main task in constructing an animator is the formulation
of a mapping from the conceptual model to the declarative
programming language that serves as the core engine of the
animator. A major sub-task of creating this mapping is the
construction of a library of routines in the underlying
language that represent the semantics of operations used in
the modeling language. For example, OCL provides several
operations that are often used to specify invariants on
subclasses (e.g., oclIsKindOf, oclIsTypeOf, and oclType).
Because Prolog++ does not provide constructs for
supporting these operations, we needed to supplement our
class definitions with reflective type information. We
accomplished this by introducing a class attribute, named
class_type, into each Prolog++ class definition. The
subclass operations are then defined with respect to this
attribute. As an example, the following definition of the
oclIsTypeOf operation exists in one of the mixin classes3
that we have created to emulate these operations in
Prolog++:

oclIsTypeOf(AType) :- self@class_type = AType.

3 All base classes must inherit from these mixin class.

Collections are used extensively in OCL. Prolog++ offers a
useful construct that provides access to all instances of a
particular class. This can be most helpful in the animation of
collections composed of instances. In Prolog++, all
instances of a particular class can be sent a message with the
following command:

(all instance class)<-someMessage.

Using variations of this construct as a template, many of the
collection-based operations of OCL (e.g., forall,
exists, collect, and select) can be translated into
Prolog++. Obviously, this construct is helpful when
mapping the OCL allInstances operation.

In addition, OCL collections have predefined properties.
The Prolog++ all instance template can be used to
implement these properties as well. A collection property
that is often referenced is the size property, which returns
the number of elements that are contained in a particular
collection. We have defined a Prolog++ implementation of
size in a mixin class. It is implemented by having each
element of a collection increment a class attribute that
contains the overall size. The size method can also be
used to provide a facility for verifying the multiplicity
constraints from a UML class diagram. This is
accomplished by applying the size method to the
collection resulting from navigating an association. The
isEmpty property can be used to determine if a particular
collection contains any elements. This can be naively
translated as a special case where size is greater than zero.
Please see Section 4.3 for an example that applies the size
method.

If a collection is composed of numeric elements, the sum
property can be meaningfully applied. This property
represents the sum of all elements in a collection. The same
technique that is used for implementing the size property
can be used to implement sum; that is, using a global class
attribute to temporarily serve as a placeholder for the
summation when an iteration over a collection is performed.

By defining the Prolog++ equivalent of OCL primitive
operations and properties in mixin classes, we can more
easily map the specific OCL constraints into a form that can
be executed from within the Prolog++ environment.

4 Example

In this section, we demonstrate the approach of validating
association constraints. We use an example that models the
basic components of an audio system; see Figure 1. The
model example is taken from [38].

In this model, a connection is made between components
through a port. Some components, like power amplifiers
and preamplifiers, have both an input port and output port.
However, microphones have a single output port, whereas
speakers have only input ports. The src and dst roles of the
Connection association model the coupling between audio
components. Impedance attributes have been added to
OutputPort and InputPort, but the diagram has been kept
simple to highlight the associations that will be under
consideration.

Figure 1. Audio System Example

A problem with the model is that it allows full connectivity
between any objects that are instances of Port or Port’s
subclasses. For example, the above model would allow an
input port to connect to itself - an illegal connection in this
domain. OCL can be used to enrich the UML class diagram
by describing rules about valid connections. Without OCL,
such rules would have to be described in natural language.
OCL allows a more precise specification of the connection
rules. Using OCL also opens up the possibility of translating
the constraint definition into an animation environment or
programming language.

There are three types of rules that we will specify using
OCL:

• valid connection of port types (e.g., input ports can
connect only to output ports),
• valid connections between audio components (e.g.,
microphones and preamplifiers),
• the necessary existence of certain components (e.g., at
least one power amplifier is needed).

4.1 Specifying connection types

Our model should specify that valid connections exist when
an input port is connected to an output port. However, it is
invalid to connect an input port to another input port, or an
output port to another output port. This can be specified in
OCL as:

Connection->forAll(c |
 c.src.oclIsTypeOf(OutputPort)
 and c.dst.oclIsTypeOf(InputPort))

To represent this constraint in Prolog++, the class_type
attribute must be inserted into each class, as discussed in
Section 3. Therefore, the outputPort class would contain a
class attribute definition like the following:

public class attributes
 class_type = 'outputPort'.

A similar declaration would need to be defined in the
inputPort class as:

public class attributes
 class_type = 'inputPort'.

In the Prolog++ port class, the inv_Connection
method can then be used to represent the semantics of the
above OCL constraint. This method can be written more
concisely using the oclIsTypeOf method described in
Section 3:

inv_Connection :-
 (all instance class)<-
 (@src<-oclIsTypeOf('outputPort'),
 @dst<-oclIsTypeOf(‘inputPort’)).

4.2 Constraining relationship participation

We also need to specify the valid connections that can occur
between the various audio components. For example, our
model will specify that a microphone can connect to only a
preamplifier; the output of a preamplifier can connect to
only a power amplifier; the output of a power amplifier can
connect to only a speaker. The OCL equivalent of these
constraints could be written as:

Mic->forAll(m | m.outputPort.dst ->
 forAll(i | i.preamp))

Preamp->forAll(p | p.outputPort.dst ->
 forAll(i | i.poweramp))

PowerAmp->forAll(a | a.outputPort.dst ->
 forAll(i | i.speaker))

Alternatively, the above expression that constrains a
microphone’s output port could be specificed as:

Preamp PowerAmp

1

Mic

1

OutputPort
Z_out : int

1 IO_Device
1

1

Speaker

1

InputPort
Z_in : int1

1

dst0..*Port 0..*

0..* src0..*
Connection

Mic->forAll(m |
 m.outputPort.dst.oclIsTypeOf(PreAmp))

Using an approach similar to Section 4.1, the above OCL
constraint can be translated into Prolog++ by navigating
from the output port part and checking that the class type of
its destination port is a preamplifier. The Prolog++ for this
constraint would be translated as:

inv_Mic_Dst :-
 (all instance)<- (outputPort@dst
 <-oclIsTypeOf(‘preAmp’)).

4.3 Specifying component existence

A final constraint that we want to specify concerns the
requirement that at least one power amplifier must exist in
our audio system. In OCL we can specify this as:

PowerAmp.allInstances->size >= 1

As described in the Section 3, each base class in a hierarchy
must inherit from a mixin class that contains a method for
computing the size of a collection. The mixin class also has
a class attribute (size_att) that is used to compute the
size. The size method can be written in Prolog++ as:

size_func :- size_att += 1.

size(S) :- size_att := 0,
 (all instance class) <- size_func,
 S = @size_att.

With the above primitives in place, the actual constraint can
be written simply as:

inv_powerAmp_existence :- size(S), S >= 1.

After the construction of basic primitives in mixin classes,
OCL constraints can be concisely represented using the
declarative power of Prolog++.

5 An Animation Environment

You need to be able to execute, debug, and simulate your
model if you want to have any kind of feedback of what the
system will actually do

David Harel [19]

A major goal in this work is to make the underlying
Prolog++ transparent to the user. During a prototype
demonstration, there is little advantage in revealing the
underlying source code to the customer. Likewise,
specification animation should not involve the customer in
the details of Prolog++. However, it may be necessary in
some situations for a developer to access the underlying
representation during an animation, but not the customer.
We provide access to the base Prolog++ environment, but

the focus from the customer’s aspect should be a more
suitable view of the results of an animation.

Figure 2 illustrates the key components of our initial
UML/OCL animation environment. Developers and
customers interact with each other as they validate the
UML/OCL models while using the animation environment.
A tool provided by Logic Programming Associates, the
Intelligence Server, allows programs written in other
languages to access the Prolog++ environment. In our
animator, this is a valuable asset because it allows the
creation of the animation environment using a language4
that has a powerful user-interface focus while treating the
Prolog++ environment as our fundamental execution engine
for animation. The animation environment constructs
Prolog++ queries and issues them to the Intelligence Server.
As Prolog++ executes the queries, results are returned back
to the environment from the Intelligence Server.

To achieve transparency, a hierarchical view of the classes
and existing objects is available. From this view, a user of
the animator may create and delete objects, view and assign
values to object attributes (if set/get methods are defined),
and check constraint invariants; see Figure 3. The animator
interacts with the Intelligence Server and issues the
appropriate queries to process the user’s commands and
update the hierarchical view. When needed, a developer
may also issue Prolog++ queries directly and alter the state
of the animation. The developer can see the effect of a query
in a special window that captures the result returned from
the Intelligence Server.

Figure 2. Components of an Animation Environment

4 Our animation environment has been constructed using
Inprise’s (Borland) Delphi.

Prolog++

Intelligence
Server

Customer

Animation
Environment

Developers

Query Result

Figure3. A Prolog++ Animation Environment

As with other animators, our animator allows a user to close
an existing animation and load a new model description.
Additionally, a user can save the state of the current
animation session. In this case, all of the objects that exist
during a session are serialized to an output file and the state
can be loaded back into the animator during a future session.

Through the animator, the result of constraint invariants can
be viewed. Constraints can be invoked at either the object or
class level. At the class level, the constraints of all objects of
a particular class are checked. Also, an option is provided to
check every constraint in the model.

6 Conclusion

This returns us to the underlying tension in the software
process: that between the subjective and the objective,
between the holistic mental view and the rigorous formal
model. The first describes what is needed; the second
ensures that what was requested is delivered.

Bruce Blum [2]

An often cited adage states that, “A picture is worth a
thousand words.” In most cases, this is meant to signify a
positive trait that expresses the subjective power of a visual
stimulus. For example, a piece of art often embodies an
observable image in addition to eliciting emotional and
visceral responses. Sometimes the perceptions of the viewer
extend any original intention that the artist attempted to

render; this is the subjective beauty of art. In a sense, this
adage focuses on the connotative expressiveness of
visualization.

However, what might be beneficial from a subjective
viewpoint could prove detrimental when attempting
objectivity. Using this adage, a problem may occur when a
visualization does indeed represent a thousand words;
especially when only about 50 of those words were
intended! An illustration representing this view is presented
in [41] and is accompanied by a statement that summarizes
the utility of graphical representations, “In considering
representations for programming, the concern is formalisms,
not art − precision, not breadth of interpretation.”

The designers of UML have worked diligently on the
difficult task of documenting the semantics of the UML
diagrams [3]. The annual OOPSLA workshop on Behavioral
Semantics [29] and the work of the pUML have also
concentrated efforts in this important area. The criticality of
these efforts can be summarized by the following statement:

However, many methodologists fail to rigorously define the
semantics of the languages. Without a rigorous semantic
definition, precise model behavior over time is not well
defined and full executability and automatic code synthesis
is impossible.

Harel and Gery [20]

There are some things that cannot be specified with fine-
grained detail in a UML diagram. Often, those things that
cannot be specified precisely in a visual diagram are
specified in natural language as commentary that is
peripheral to the diagram. In a previous section of this paper
we have argued against the danger of ambiguity that can
result from a reliance on natural language.

The OCL has been proposed as an alternative to natural
language in the specification of those things that cannot be
visually described [39], [48]. We believe that the
enrichment of UML diagrams with OCL not only increases
the precision of a UML diagram, but also presents
opportunities for animating those diagrams using a
declarative language. Specification animation allows a
developer to interact with the customer in a validation
context while hiding many of the underlying diagrams and
formalisms from the client.

Our initial work has focused on discovering techniques for
mapping parts of the UML and OCL to an object-oriented
declarative programming language. In particular, we have
focused on the translation of invariant constraints from OCL
to Prolog++ and integrating the translation into an
environment that allows a developer to interact with the
client. We plan to improve on this initial work in several
areas.

Our most immediate plan for future work is the
incorporation of method pre/post-conditions into the
animation. Modeling the behavior of a method through
pre/post-conditions is a most important aspect toward
providing a meaningful animation. We will also investigate
the roles that other UML diagrams (e.g., state diagrams)
play in an animation session.

The Prolog++ code that we currently load into our
animation environment and feed through the Intelligence
Server is manually translated from UML/OCL. An obvious
feature that we would like to add is a technique for
automatically translating the UML/OCL into Prolog++. We
have already constructed an OCL parser for a project that is
unrelated to this work. Our research colleagues at
Vanderbilt’s Institute for Software Integrated Systems
(ISIS)5 have performed work on Model Integrated
Computing (MIC) [46] that has resulted in a Graphical
Modeling Environment (GME) for creating, among other
things, UML diagrams [32]. We would like to explore the
possibility of using environments like the GME, or Rational
Rose and the Rose Extensibility Interface (REI), to extract a
model and automate the translation.

5 http://www.isis.vanderbilt.edu

References

1. Berry, Daniel M., “Software and House Requirements

Engineering: Lessons Learned in Combating
Requirements Creep,” Requirements Engineering
Journal, 3:3&4, 1999, pp. 242−244.

2. Blum, Bruce, “A Taxonomy of Software Development
Methods,” Communications of the ACM, November
1994, pp. 82−94.

3. Booch, Grady, James Rumbaugh, and Ivar Jacobson,
The Unified Modeling Language User Guide, Addison-
Wesley. Reading, Ma, 1999.

4. Bourdeau, Robert H., and Betty C. Cheng, “A Formal
Semantics for Object Model Diagrams,” IEEE
Transactions on Software Engineering, October 1995,
pp. 799-821.

5. Boyd, Nik, “Using Natural Language in Software
Development,” The Journal of Object-Oriented
Programming, February 1999, pp. 45−55.

6. Bruel, J.M., R.B. France, and E.B. Ferndandez,
“Formal Specification of a Multimedia Conferencing
Authorization System,” Proceedings of the Fifth
OOPSLA Workshop on Specification of Behavioral
Semantics, Haim Kilov and V.J. Harvey, Eds., San
Jose, CA, October 1996, pp. 19−32.

7. Carrington, David, David Duke, Roger Duke, Paul
King, Gordon Rose, and Graeme Smith, “Object-Z: An
Object-Oriented Extension to Z,” Formal Description
Techniques II (1989), North-Holland, 1990, pp.
281−296.

8. Davis, Herbert, Ed., “A Critical Essay Upon the
Faculties of the Mind,” in Jonathan Swift - Tale of a
Tub: With Other Early Works, Basil Blackwell & Mott
Ltd., Oxford, UK, 1965.

9. D rr, E.H., and N. Plat, “VDM++ Language Reference
Manual,” Afrodite (ESPRIT-III project number 6500)
document AFRO/CG/ED/LRM/V10, Cap Volmac,
August 1995, pp. 1−85.

10. Easterbrook, Steve M., and John Callahan, “Formal
Methods for V&V of Partial Specifications: An
Experience Report,” Proceedings of the Third IEEE
International Symposium on Requirements
Engineering, Annapolis, Maryland, January 5-8, 1997.

11. Finney, Kate, “Mathematical Notation in Formal
Specification: Too Difficult for the Masses?” IEEE
Transactions on Software Engineering, February 1996,
pp. 158−159.

12. Fuchs, Norbert, “Specifications are (Preferably)
Executable”, IEE Software Engineering Journal,
September 1992, pp. 323−334.

13. Goodenough, John, and Susan Gerhart, “Towards a
Theory of Test Data Selection,” IEEE Transactions on
Software Engineering, June 1975, pp. 156−173.

14. Goodman, Howard S., “Animating Z Specifications in
Haskell Using a Monad,” School of Computer Science,

University of Birmingham, England, November 1993,
pp. 1−28.

15. Gordon, V.S., and J.M. Bieman, “Rapid Prototype
Lessons Learned,” IEEE Software, January 1995, pp.
85−95.

16. Gravell, Andrew and Peter Henderson, “Executing
Formal Specifications Need Not Be Harmful,” IEE
Software Journal, March 1996, pp. 104−110.

17. Gray, Jeff, “Improving Completeness and Consistency
in Object-Oriented Analysis through Adaptable
Formalisms,” ACM Mid-Southeast Conference,
Gatlinburg, TN, November 1995.

18. Hall, Anthony, “Seven Myths of Formal Methods,”
IEEE Software, September 1990, pp. 11−19.

19. Harel, David, “On Modeling and analyzing Object
Behavior,” Keynote Address, OOPSLA ’97, Atlanta,
GA, October 1997.

20. Harel, David, and Eran Gery, “Executable Object
Modeling with Statecharts,” IEEE Computer, July
1997, pp. 31−42.

21. Hayes, I.J., and C.B. Jones, “Specifications are Not
(Necessarily) Executable,” IEE Software Engineering
Journal, November 1989, pp. 330−338.

22. Hasselbring, W., “Animation of Object-Z
Specifications with a Set-Oriented Prototyping
Language,” Z User Workshop, June 1994, pp. 337−356.

23. Hazel, Daniel, Paul Strooper, and Owen Traynor,
“Possum: An Animator for the SUM Specification
Language,” Technical Report 97-10, Software
Verification Research Centre, Department of Computer
Science, The University of Queensland, Brisbane,
Queensland, Australia, 1997.

24. Hewitt, M.A., C.M. O’Halloran, and C.T. Sennett,
“Experiences with PiZa, an Animator for Z”, ZUM ’97:
The Z Formal Specification Notation, Lecture Notes in
Computer Science 1221, Springer−Verlag pp. 37−51.

25. Hill, I.D., “Wouldn’t It Be Nice If We Could Write
Computer Programs in Ordinary English − or Would
It?” The Computer Bulletin, June 1972, pp. 306−312.

26. Hoare, C,A.R, “An Overview of Some Formal Methods
for Program Design,” IEEE Computer, September
1987, pp. 85−91.

27. Keil, Mark, and Erran Carmel, “Customer-Developer
Links in Software Development,” Communications of
the ACM, May 1995, pp. 33−44.

28. Kent, Stuart, “Constraint Diagrams: Visualizing
Invariants in Object-Oriented Models,” Twelfth Annual
OOPSLA Conference, Atlanta, GA, October 1997, pp.
327−341.

29. Kilov, Haim, Bernhard Rumpe, and Ian Simmonds,
Seventh OOPSLA Workshop on Behavioral Semantics
of OO Business and System Specifications, TUM-I9820,
Technische Universit t M nchen, 1998.

30. Knott, Ron, and Paul Krause, “The Implementation of
Z Specifications using Program Transformation

Systems: The SuZan Project,” The Unified
Computation Laboratory, C.M.I. Rattray and R.G.
Clark (eds.), The Institute of Mathematics and Its
Applications, Oxford University Press, 1992, pp.
207−220.

31. Lano, Kevin, and Howard Haughton, Object-Oriented
Specification Case Studies, Prentice-Hall International,
London, UK, 1994.

32. Ledeczi A., Maroti M., Karsai G., Nordstrom G.:
“Metaprogrammable Toolkit for Model-Integrated
Computing”, Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference,
Nashville, TN, March 1999.

33. Lewis, C. S., Studies in Words, 2nd ed., Cambridge
University Press, Cambridge, England, 1967.

34. Meyer, Bertrand, “On Formalism in Specifications,”
IEEE Software, January 1985, pp. 6−26.

35. Moss, Chris, Prolog++: The Power of Object-Oriented
Programming, Addison-Wesley, 1994.

36. Naur, Peter, “Programming by Action Clusters,” BIT,
vol. 9, no. 3, 1969, pp. 250−258.

37. Neumann, Peter G., “Only His Only Grammarian Can
Only Say What Only He Means,” ACM SIGSOFT
Software Engineering Notes, January 1984, pg. 6.

38. Nordstrum, Greg, Janos Sztipanovits, Gabor Karsai,
and Akos Ledeczi, “Metamodeling – Rapid Design and
Evolution of Domain-Specific Modeling
Environments,” Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference, March
1999.

39. Object Constraint Language Specification, Version 1.1,
Object Management Group, September 1997.

40. The Oxford English Dictionary, 2nd ed., Oxford
University Press, Oxford, England, 1989.

41. Petre, Marian, “Why Looking Isn’t Always Seeing:
Readership Skills and Graphical Programming,”
Communications of the ACM, June 1995, pp. 33−44.

42. Schach, Stephen R., Classical and Object-Oriented
Software Engineering with UML and C++,
WCB/McGraw-Hill, 1999.

43. Siddiqi, Jawed, Ian Morrey, Graham Buckberry, and
Richard Hibberd, “Towards CASE Tools for
Prototyping Z Specifications,” CASE ’93, pp. 166−173.

44. Spivey, J.M., The Z Notation: A Reference Manual,
Prentice-Hall, New York, NY, 1992.

45. Stepney, Susan, Rosalind Barden, and David Cooper,
Eds., Object Orientation in Z, Springer-Verlag, 1992.

46. Sztipanovits Janos, and Gabor Karsai, “Model-
Integrated Computing”, IEEE Computer, April 1997,
pp. 110-112.

47. Utting, Mark, “Animating Z: Interactivity,
Transparency and Equivalence,” Technical Report No.
94-40, Software Verification Research Centre,
Department of Computer Science, The University of
Queensland, Brisbane, Queensland, Australia, 1994.

48. Warmer, Jos, and Anneke Kleppe, The Object
Constraint Language: Precise Modeling with UML,
Addison-Wesley, Reading, MA, 1999.

49. Warmer, Jos, and Anneke Kleppe, “OCL: The
Constraint Language for UML,” The Journal of Object-
Oriented Programming, May 1999, pp. 10−13.

50. West, Margaret M., and Barry M. Eaglestone,
“Software Development: Two Approaches to
Animation of Z Specifications Using Prolog,” IEE
Software Engineering Journal, July 1992, pp. 264−276.

51. Xiaoping, Jia, “ZANS: A Z Animation System,” School
of Computer Science, DePaul University, Chicago,
Illinois, 1995.

